Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a novel graph neural network (GNN) architecture for jointly optimizing user association, base station (BS) beamforming, and reconfigurable intelligent surface (RIS) phase shift in a multi-RIS aided multi-cell network. The proposed architecture represents BSs and users as nodes in a bipartite graph where the same type of nodes shares the same neural networks for generating messages and updating its representations, allowing for distributed implementation. In addition, we utilize a composite reflected channel estimation integrated between layers of the GNN structure to significantly reduce the signaling overhead and complexity required for channel estimation in a multi-RIS network. To avoid BS overload, load balancing is regularized in the training of the GNN and we further develop a collision avoidance algorithm to ensure strict load balancing at every BS. Numerical results show that the proposed GNN architecture is significantly more efficient than existing approaches. The results further demonstrate its strong scalability with network size and achieving a throughput performance approaching that of a centralized traditional optimization algorithm, without requiring individual RIS-reflected channels estimation and without the need for re-training or fine-tuning.more » « lessFree, publicly-accessible full text available July 1, 2026
-
null (Ed.)Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user devices. We consider a mutil-access edge computing (MEC) system with collocated MEC servers and base-stations/access points (BS/AP) supporting multiple users requesting data computation and wireless charging. We propose an integrated solution for wireless charging with computation offloading to satisfy the largest feasible proportion of requested wireless charging while keeping the total energy consumption at the minimum, subject to the MEC-AP transmit power and latency constraints. We propose a novel nested algorithm to jointly perform data partitioning, time allocation, transmit power control and design the optimal energy beamforming for wireless charging. Our resource allocation scheme offers a minimal energy consumption solution compared to other schemes while also delivering a higher amount of wirelessly transferred charge to the users. Even with data offloading, our proposed solution shows significant charging performance, comparable to the case of charging alone, hence showing the effectiveness of performing partial offloading jointly with wireless charging.more » « less
-
null (Ed.)Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user-devices. We consider a multi-access edge computing (MEC) system with collocated MEC server and base-station/access point (AP), each equipped with a massive MIMO antenna array, supporting multiple users requesting data computation and wireless charging. The goal is to minimize the energy consumption for computation offloading and maximize the received energy at the user from wireless charging. The proposed solution is a novel two-stage algorithm employing nested descent algorithm, primal-dual subgradient and linear programming techniques to perform data partitioning and time allocation for computation offloading and design the optimal energy beamforming for wireless charging, all within MEC-AP transmit power and latency constraints. Algorithm results show that optimal energy beamforming significantly outperforms other schemes such as isotropic or directed charging without beam power allocation. Compared to binary offloading, data partition in partial offloading leads to lower energy consumption and more charging time, leading to better wireless charging performance. The charged energy over an extended period of multiple time-slots both with and without computation offloading can be substantial. Wireless charging from MEC-AP thus offers a viable untethered approach for supplying energy to user-devices.more » « less
An official website of the United States government
